# nestedtemp {vegan}

### Description

Patches or local communities are regarded as nested if they all could be subsets of the same community. In general, species poor communities should be subsets of species rich communities, and rare species should only occur in species rich communities.

### Usage

nestedchecker(comm) nestedn0(comm) nesteddisc(comm, niter = 200) nestedtemp(comm, ...) nestednodf(comm, order = TRUE, weighted = FALSE, wbinary = FALSE) nestedbetasor(comm) nestedbetajac(comm) ## S3 method for class 'nestedtemp': plot((x, kind = c("temperature", "incidence"), col=rev(heat.colors(100)), names = FALSE, ...)) ## S3 method for class 'nestednodf': plot((x, col = "red", names = FALSE, ...))

### Arguments

- comm
- Community data.
- niter
- Number of iterations to reorder tied columns.
- x
- Result object for a
`plot`

. - col
- Colour scheme for matrix temperatures.
- kind
- The kind of plot produced.
- names
- Label columns and rows in the plot using names in
`comm`

. If it is a logical vector of length 2, row and column labels are returned accordingly. - order
- Order rows and columns by frequencies.
- weighted
- Use species abundances as weights of interactions.
- wbinary
- Modify original method so that binary data give the same result in weighted and and unweighted analysis.
- ...
- Other arguments to functions.

### Details

The nestedness functions evaluate alternative indices of nestedness. The functions are intended to be used together with Null model communities and used as an argument in `oecosimu`

to analyse the non-randomness of results. Function `nestedchecker`

gives the number of checkerboard units, or 2x2 submatrices where both species occur once but on different sites (Stone & Roberts 1990).

Function `nestedn0`

implements nestedness measure N0 which is the number of absences from the sites which are richer than the most pauperate site species occurs (Patterson & Atmar 1986).

Function `nesteddisc`

implements discrepancy index which is the number of ones that should be shifted to fill a row with ones in a table arranged by species frequencies (Brualdi & Sanderson 1999). The original definition arranges species (columns) by their frequencies, but did not have any method of handling tied frequencies. The `nesteddisc`

function tries to order tied columns to minimize the discrepancy statistic but this is rather slow, and with a large number of tied columns there is no guarantee that the best ordering was found (argument `niter`

gives the maximum number of tried orders). In that case a warning of tied columns will be issued.

Function `nestedtemp`

finds the matrix temperature which is defined as the sum of “surprises” in arranged matrix. In arranged unsurprising matrix all species within proportion given by matrix fill are in the upper left corner of the matrix, and the surprise of the absence or presences is the diagonal distance from the fill line (Atmar & Patterson 1993). Function tries to pack species and sites to a low temperature (Rodriguez-GironesTEXT & Santamaria 2006), but this is an iterative procedure, and the temperatures usually vary among runs. Function `nestedtemp`

also has a `plot`

method which can display either incidences or temperatures of the surprises. Matrix temperature was rather vaguely described (Atmar & Patterson 1993), but Rodriguez-GironesTEXT & Santamaria (2006) are more explicit and their description is used here. However, the results probably differ from other implementations, and users should be cautious in interpreting the results. The details of calculations are explained in the `vignette`

*Design decisions and implementation* that you can read using functions `browseVignettes`

. Function `nestedness`

in the bipartite package is a direct port of the BINMATNEST programme of Rodriguez-GironesTEXT & Santamaria (2006).

Function `nestednodf`

implements a nestedness metric based on overlap and decreasing fill (Almeida-Neto et al., 2008). Two basic properties are required for a matrix to have the maximum degree of nestedness according to this metric: (1) complete overlap of 1's from right to left columns and from down to up rows, and (2) decreasing marginal totals between all pairs of columns and all pairs of rows. The nestedness statistic is evaluated separately for columns (`N columns`

) for rows (`N rows`

) and combined for the whole matrix (`NODF`

). If you set `order = FALSE`

, the statistic is evaluated with the current matrix ordering allowing tests of other meaningful hypothesis of matrix structure than default ordering by row and column totals (breaking ties by total abundances when `weighted = TRUE`

) (see Almeida-Neto et al. 2008). With `weighted = TRUE`

, the function finds the weighted version of the index (Almeida-Neto & Ulrich, 2011). However, this requires quantitative null models for adequate testing. Almeida-Neto & Ulrich (2011) say that you have positive nestedness if values in the first row/column are higher than in the second. With this condition, weighted analysis of binary data will always give zero nestedness. With argument `wbinary = TRUE`

, equality of rows/colums also indicates nestedness, and binary data will give identical results in weighted and unweighted analysis. However, this can also influence the results of weighted analysis so that the results may differ from Almeida-Neto & Ulrich (2011).

Functions `nestedbetasor`

and `nestedbetajac`

find multiple-site dissimilarities and decompose these into components of turnover and nestedness following Baselga (2010). This can be seen as a decomposition of beta diversity (see `betadiver`

). Function `nestedbetasor`

uses SorensenTEXT dissimilarity and the turnover component is Simpson dissimilarity (Baselga 2010), and `nestedbetajac`

uses analogous methods with the Jaccard index. The functions return a vector of three items: turnover, nestedness and their sum which is the multiple SorensenTEXT or Jaccard dissimilarity. The last one is the total beta diversity (Baselga 2010). The functions will treat data as presence/absence (binary) and they can be used with binary `nullmodel`

). The overall dissimilarity is constant in all `nullmodel`

s that fix species (column) frequencies (`"c0"`

), and all components are constant if row columns are also fixed (e.g., model `"quasiswap"`

), and the functions are not meaningful with these null models.

### Values

The result returned by a nestedness function contains an item called `statistic`

, but the other components differ among functions. The functions are constructed so that they can be handled by `oecosimu`

.

### References

Almeida-Neto, M., GumaraesTEXT, P., GumaraesTEXT, P.R., Loyola, R.D. & Ulrich, W. (2008). A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. *Oikos* 117, 1227--1239.

Almeida-Neto, M. & Ulrich, W. (2011). A straightforward computational approach for measuring nestedness using quantitative matrices. *Env. Mod. Software* 26, 173--178. Atmar, W. & Patterson, B.D. (1993). The measurement of order and disorder in the distribution of species in fragmented habitat. *Oecologia* 96, 373--382.

Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. *Global Ecol. Biogeog.* 19, 134--143.

Brualdi, R.A. & Sanderson, J.G. (1999). Nested species subsets, gaps, and discrepancy. *Oecologia* 119, 256--264.

Patterson, B.D. & Atmar, W. (1986). Nested subsets and the structure of insular mammalian faunas and archipelagos. *Biol. J. Linnean Soc.* 28, 65--82.

Rodriguez-GironesTEXT, M.A. & Santamaria, L. (2006). A new algorithm to calculate the nestedness temperature of presence-absence matrices. *J. Biogeogr.* 33, 924--935.

Stone, L. & Roberts, A. (1990). The checkerboard score and species distributions. *Oecologia* 85, 74--79.

Wright, D.H., Patterson, B.D., Mikkelson, G.M., Cutler, A. & Atmar, W. (1998). A comparative analysis of nested subset patterns of species composition. *Oecologia* 113, 1--20.

### See Also

In general, the functions should be used with `oecosimu`

which generates Null model communities to assess the non-randomness of nestedness patterns.

### Examples

data(sipoo) ## Matrix temperature out <- nestedtemp(sipoo) out plot(out) plot(out, kind="incid") ## Use oecosimu to assess the non-randomness of checker board units nestedchecker(sipoo) oecosimu(sipoo, nestedchecker, "quasiswap") ## Another Null model and standardized checkerboard score oecosimu(sipoo, nestedchecker, "r00", statistic = "C.score")

Documentation reproduced from package vegan, version 2.3-5. License: GPL-2